Methods of Microbiology

Staining Media Microscopy

Staining

- Increase contrast of microorganisms
- Classified into types of stains
 - Simple stain: one dye, one step
 - Negative stain
 - Positive stain
 - Differential stain: distinguish one group from another
 - Structural or special stains

Dyes

- Colorizing agents
- Organic salts with positive and negative charges
- One ion is colored -chromophore
- Basic dye: positive ion is colored
 MeBlue⁺ Cl⁻
- Acidic dye: negative ion is chromphore

Basic Dye

- Works best at neutral or alkaline pH
- Bacterial cell wall has slight negative charge at pH 7
- Basic dye (positive) attracted to cell wall (negative)
- Combines with negatively charged molecules
- Crystal violet, methylene blue, safranin

Acidic Dye

- Chromophore repelled by negative cell wall
- Background stained, bacteria colorless
- Negative stain-look at size, shape
 Less distortion since heat isn't used
- Acidic dyes stain bacteria if grown at lower pH
- Eosin, India ink

Simple Stains

- One dye, one step
- Direct (positive) stain using basic dye
 - Shape and arrangement of cells
 - Stains cells
- Negative stain using acidic dye
 - Less distortion of size and shape
 - No heat used
 - Stains background

Differential Stains

- More than one dye
- Gram stain, acid fast
 - Distinguish and classify bacteria according to cell wall
- Primary dye
- Decolorizing step
 - Removes dye from certain cells
- Counter stain

Special/ Structural Stains

- Identify structures within or on cells
 - Capsule stain
 - Endospore stain
 - Flagellar stain
- Different parts of cell are stained different colors

Media

- Culture media-nutrients for growth of microbes
- Inoculum-organism put on medium
- Pure culture-colony resulting from growth of one cell
 - Streak plates

Living vs Nonliving

- Viruses, few bacteria
- Living host-eggs, tissue cells
- Mycobacterium leprae –armadillos
- Most microbes grow on nonliving media

Chemically Defined

- Exact chemical composition known
- Chemoheterotrophs
 - Glucose
 - carbon source
 - energy source

TABLE 6.2	A Chemically Defined Medium for Growing a Typical Chemoheterotroph, Such as <i>E. coli</i>		
Constituent		Amount	
Glucose		5.0 g	
Ammonium phosphate, monobasic (NH ₄ H ₂ PO ₄)		1.0 g	
Sodium chloride (NaCl)		5.0 g	
Magnesium sulfate (MgSO ₄ · 7H ₂ O)		0.2 g	
Potassium phosphate, dibasic (K ₂ HPO ₄) 1.0 g		1.0 g	
Water 1 liter		1 liter	

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

TABLE 6.3	A Chemically Defined Medium for Growing a Fastidious Chemoheterotrophic Bacterium, Such as Neisseria gonorrhoeae			
Constituent		Amount	Constituent	Amount
Carbon and e	energy sources		Amino acids	
Glucose		9.1 g	Cysteine	1.5 g
Starch		9.1 g	Arginine, proline (each)	0.3 g
Sodium ace	etate	1.8 g	Glutamic acid, methionine (each)	0.2 g
Sodium citr	ate	1.4 g	Asparagine, isoleucine, serine (each)	0.2 g
Oxaloacetate		0.3 g	Cystine	0.06 g
Salts			Organic growth factors	
Potassium phosphate, dibasic (K ₂ HPO ₄)		12.7 g	Calcium pantothenate	0.02 g
Sodium chl	oride (NaCl)	6.4 g	Thiamine	0.02 g
Potassium p	ohosphate, monobasic (KH ₂ PO ₄)	5.5 g	Nicotinamide adenine dinucleotide	0.01 g
Sodium bic	arbonate (NaHCO ₃)	1.2 g	Uracil	0.006 g
Potassium sulfate (K ₂ SO ₄)		1.1 g	Biotin	0.005 g
Sodium sulfate (Na ₂ SO ₄)		0.9 g	Hypoxanthine	0.003 g
Magnesium	chloride (MgCl ₂)	0.5 g	Reducing agent	
Ammonium	chloride (NH ₄ Cl)	0.4 g	Sodium thioglycolate	0.00003 g
Potassium chloride (KCl)		0.4 g	Water	1 liter
Calcium ch	loride (CaCl ₂)	0.006 g		
Ferric nitrat	e [Fe(NO ₃) ₃]	0.006 g		

SOURCE: R. M. Atlas, Handbook of Microbiological Media, Ann Arbor, MI: CRC Press, 1993.

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Complex Media

- Used for most microorganisms
- Cannot write formula for each ingredient
- C,N,energy, S requirements
 - Peptones
- Vitamins, other growth factors
 - Extracts-yeast or beef
 - Supplement N & C sources

Complex Media

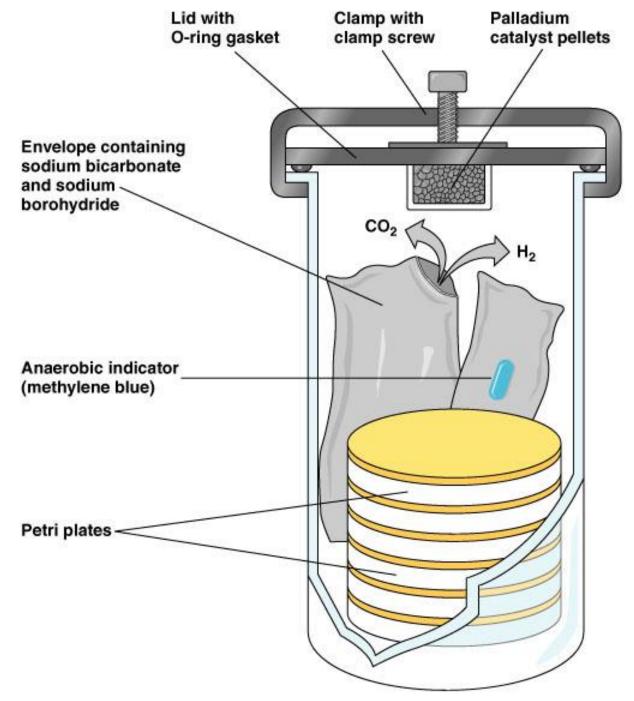
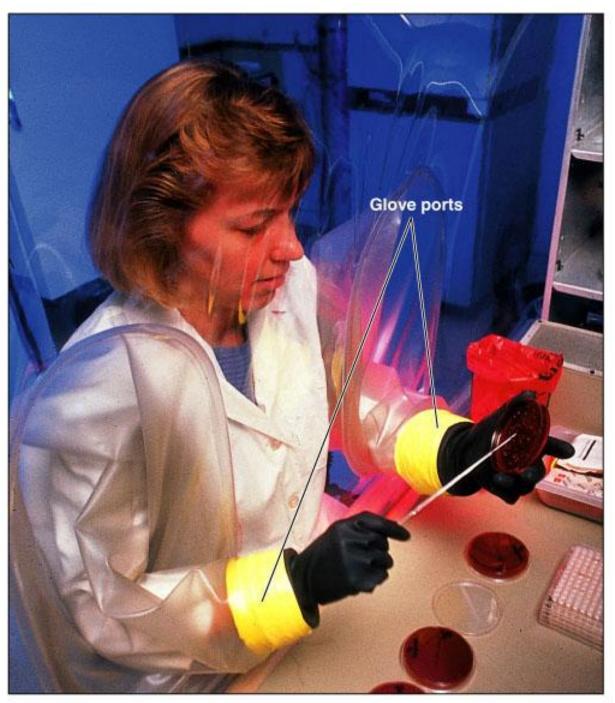
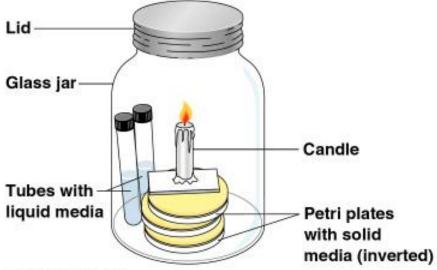

- Nutrient broth —liquid form
- Nutrient agar –solid form
 - Plate (Petri dish)
 - Lid fits over bottom
 - Excludes airborne contaminants
 - Deep
 - Slant in a tube
 - Stock cultures
 - Larger surface area

TABLE 6.4	Composition of Nutrient Agar, a Complex Medium for the Growth of Heterotrophic Bacteria		
Constituent		Amount	
Peptone (partially digested protein) 5.		5.0 g	
Beef extract		3.0 g	
Sodium chloride		8.0 g	
Agar		15.0 g	
Water		1 liter	

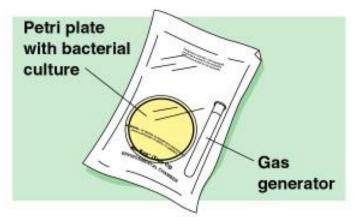

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Anaerobic Methods

- Reducing media
 - Substance combines with oxygen
 - Ties it up
- Anaerobic jar
 - Use a packet that creates anaerobic environment
- Use both in lab


Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.


Candle Jar

- Reduce oxygen levels
- Provides more CO₂
- Microaerophilics

(a) Candle jar

Plates and tubes inoculated with, for example, *Neisseria meningitidis* are placed in a jar with a lighted candle, and the jar is sealed. This will provide a CO₂ atmosphere of approximately 3%.

(b) CO₂-generating packet

The packet consists of a bag containing a Petri plate and a CO_2 gas generator. The gas generator is crushed to mix the chemicals it contains and start the reaction that produces CO_2 . This gas reduces the oxygen concentration in the bag to about 5% and provides a CO_2 concentration of about 10%.

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Selective and Differential Media

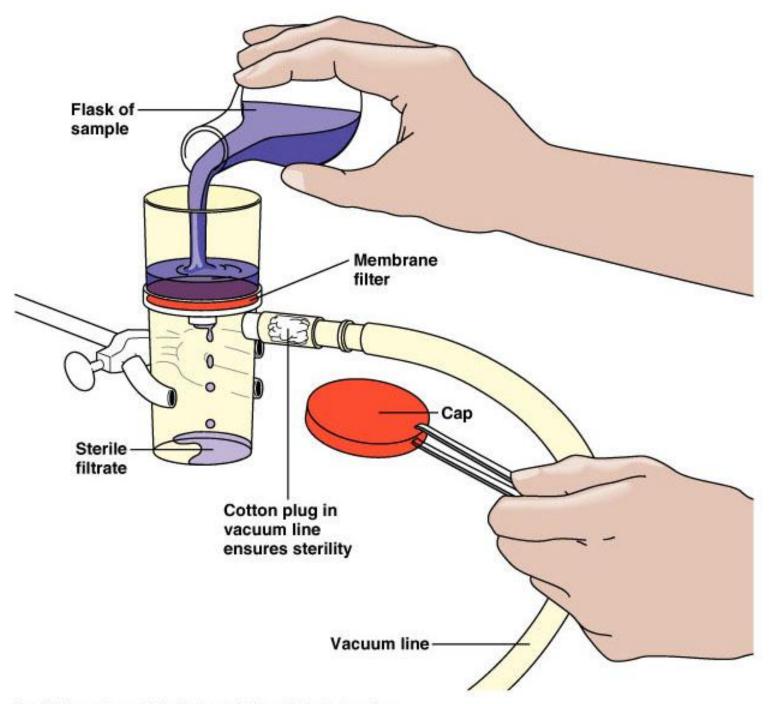
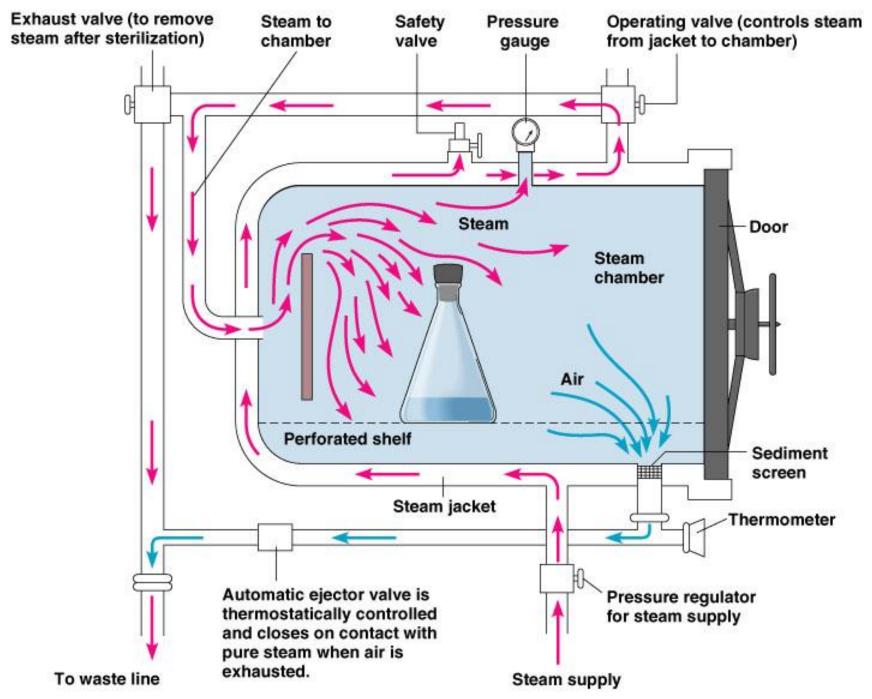

- Selective
 - Suppresses growth of unwanted bacteria
 - Encourages growth of desired bacteria
- Differential
 - Most grow
 - Can distinguish desired organisms from others

TABLE 6.5	Culture Media	
Туре	Purpose	
Chemically defined	Growth of chemoautotrophs and photoautotrophs, and microbiological assays.	
Complex	Growth of most chemoheterotrophic organisms.	
Reducing	Growth of obligate anaerobes.	
Selective	Suppression of unwanted microbes; encouraging desired microbes.	
Differential	Differentiation of colonies of desired microbes from others.	
Enrichment	Similar to selective media but designed to increase numbers of desired microbes to detectable levels.	

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.


Filtration

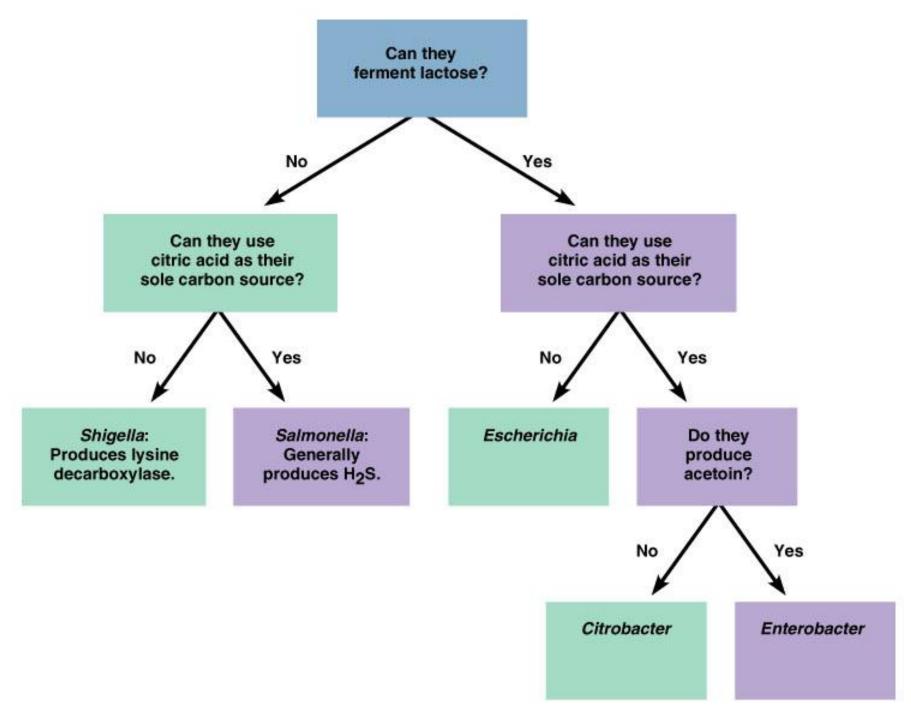
- Passage of liquid through screen device
- Pores small enough to retain microbes
- Sterilize heat sensitive materials
 - Culture media
 - Enzymes
 - Vaccines
 - Antibiotics
- Negative-uses vacuum
- Positive uses pressure

Autoclave

- Uses temperature above boiling water
- Steam under pressure
- Preferred method unless material is damaged
- Higher the pressure, higher the temperature
- Need direct contact with steam
- 15 psi at 121 C for 15 mins

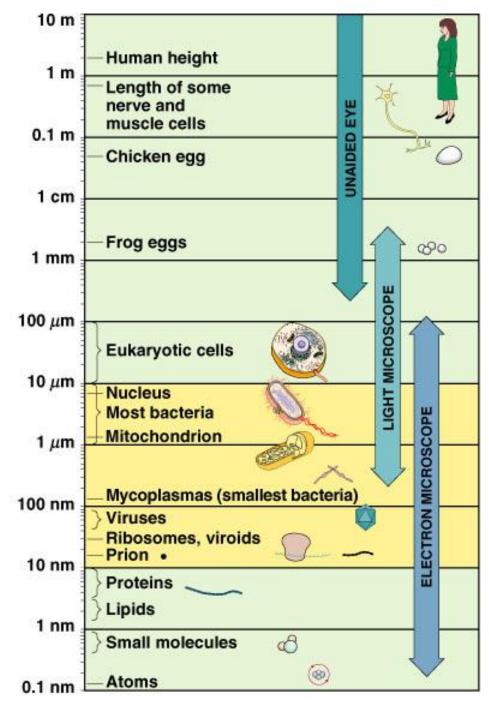
Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Identifying Microorganisms


- Important for treatment of disease
- Lab quickly IDs specific organism – PCR Tests
- Cell wall composition, morphology, differential staining, biochemical testing

ID in Laboratory

- Staining
 - Morphology and arrangement of cells
 - Presence of endospores, capsules etc.
 - Gram stain
 - Acid fast stain


ID Organisms

- Biochemical tests
 - Fermentation of selected nutrients
 - Rapid ID several tests at same time
- Dichotomous key

Microscope

- Simple vs compound
- Assigned scope
- Know parts & functions
- Proper use & care of scope

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Compound Microscope

- Light or electron microscope
 - Light for intact cells
 - Electron for details & internal structures
- Light scopes uses visible or UV light
- Both use lenses to magnify objects

Lenses

- Total magnification of compound scope
 - Product of objective lens X ocular lens
 - 1500 X upper limit for light scope
 - Above this resolution does not improve
- Parfocal lenses
- Working distance

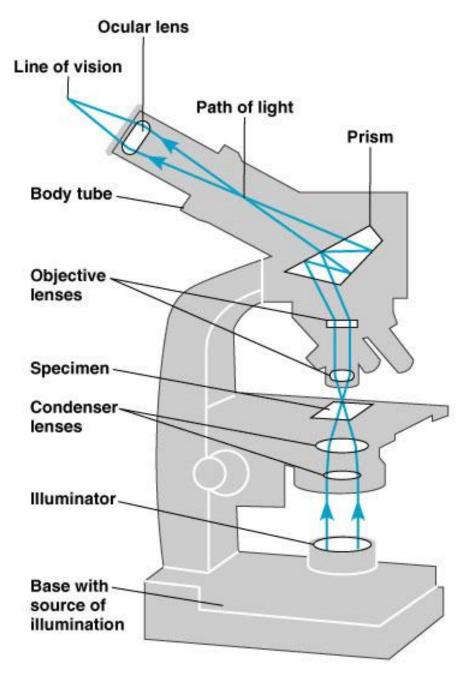
Resolution

- Ability to distinguish 2 adjacent objects as separate and distinct
- Dictated by the physical properties of light

 Determines what we are able to see distinctly with scope
- Limit is 0.2 um for our light scope

Light Microscope

- Visible light, where?
- Average wavelength of 0.55um
 - Enters condenser lens
 - Light focused into a cone on slide
- Aperture diaphragm
 - Varies diameter of cone
 - Need more light with 100x lens


Ocular lens (eyepiece)	
Remagnifies the image formed	
by the objective lens	
,	
Body tube	
Transmits the image from the	
objective lens to the ocular lens	
Arm	Leica ATE 2000
	All LUCU
Objective lenses	
Primary lenses that magnify the specimen	
Stage	
Holds the microscope slide in position	
Holds the microscope side in position	
Condenser	
Focuses light through specimen	
Focuses light through specimen	
Diaphragm Controls the amount	
of light entering the condenser	
or light entering the condenser	
Coarse focusing knob	
Coarse rocusing knob	
Illuminator Light source	
Base	
/	
Eine feauring knob	
Fine focusing knob	(a) Dringing parts and functions

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

(a) Principal parts and functions

Light Path

- Light enters objective lens
 - Collect light from specimen
 - Forms a magnified inverted image
 - Image magnified by ocular lens & passed to eye
- Total magnification $(40x \times 10x = 400x)$
- Parfocal

(b) The path of light (bottom to top)

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Contrast

- Density between object & background
- Difference in light intensity
 - Absorption of light & scattering of light
 - Improves image detail
- Bacteria are colorless

– Need to increase artificially by staining

• Contrast is property of specimen

Resolution

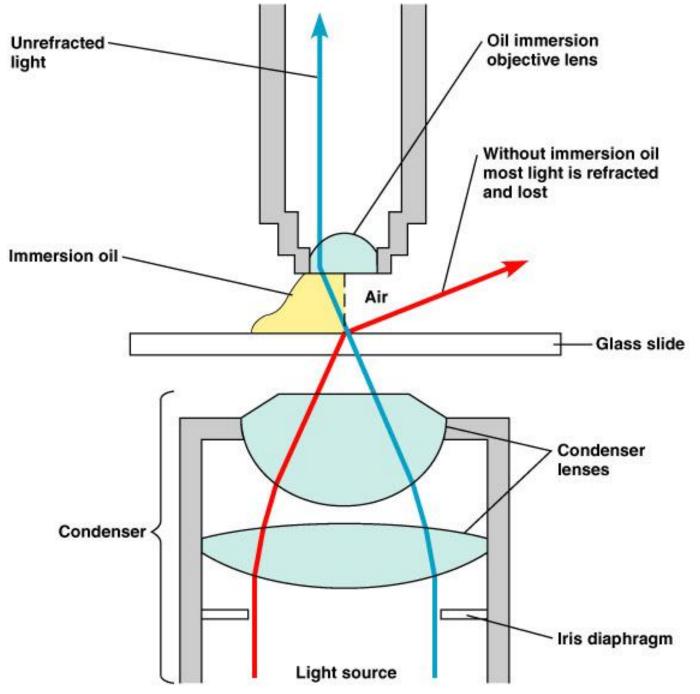
- Distinguish detail within image
 - TV with clear picture-high resolution
- Property of lens system, measured as resolving power
- Closest that 2 points can be together and still seen as separate
- RP = <u>wavelength of light</u>

2 X NA

Resolving Power

- Function of numerical aperture: NA
 - Measure of light gathering ability
 - Stamped on side of lens
 - Generally lenses with higher magnification have higher NA

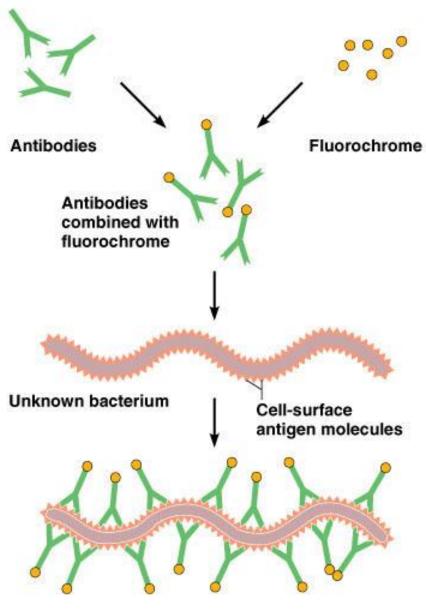
Resolving Power

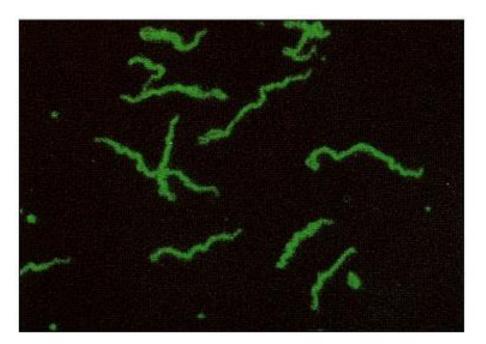

- Function of wavelength of light
 - Shorter wavelength increases resolution
- Refractive index of material between objective lens & specimen

Oil Immersion Lens

- Light bends (refracts) as it passes from glass into air
 - Some light does not enter this smaller objective lens
- Use oil between slide and 100x lens
 - Displaces air between lens and specimen
 - Glass and oil have same RI so less bending
 - Oil becomes part of the optics of glass
- Increases resolution

Oil Immersion Lens

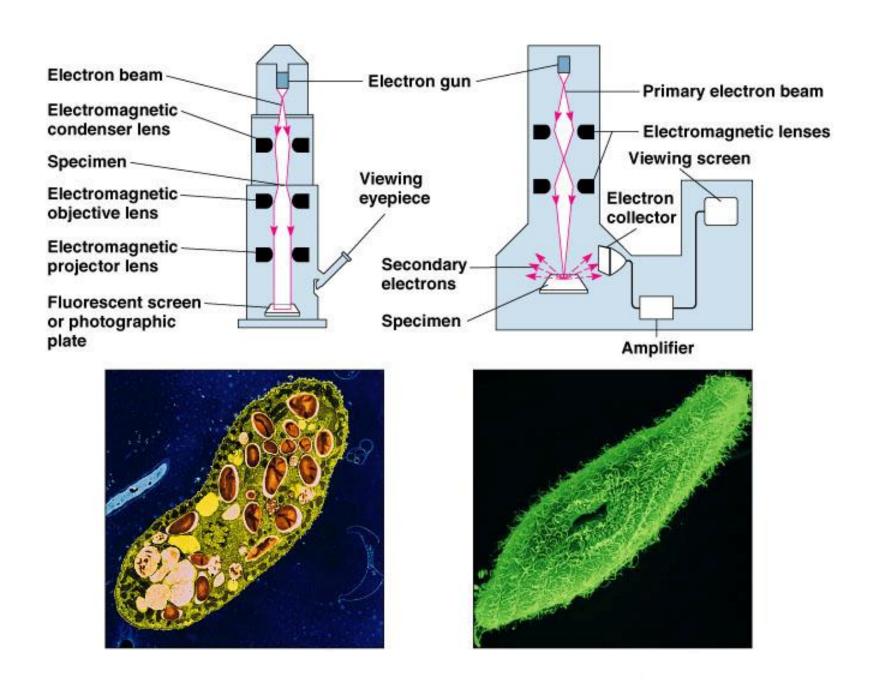

- Lens captures more light since light travels at same speed through oil as glass
 - Less refraction of light
 - Increase in NA (ability to capture light) of the 100x lens which increases resolution
- Summary: increased resolution
 - Increases illumination by decreasing refraction of light


Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Fluorescent Microscope

- Used to view antigen antibody reactions
- Specimen tagged with fluorescent dye
 - Molecules absorb light at one wavelength (usually UV)
 - Emit light of a longer wavelength- green or orange color
- Ocular lens fitted with filter that permits longer wavelengths & blocks shorter ones
- UV radiation (0.23-0.35um) so better resolution

Bacterial cell with bound antibodies combined with fluorochrome


(a)

(b)

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Electron Microscopy

- Uses electrons as source of illumination
 - 1000x shorter than visible light
 - Use electromagnetic lenses
 - Image formed by electrons projected upon film
 - Magnification is up to to 10^6
- Wavelength of electrons is dependent upon voltage of electron beam
 - 0.01nm to 0.001nm

(a) Transmission

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings. .